
Introduction to neural networks

Herman Kamper

2023-03, CC BY-SA 4.0

Preliminaries

Binary logistic regression with basis functions as a neural network

Why is it called a neural network?

Backpropagation without forks

Multilayer feedforward neural network

Why this (cool) graph formulation?

Backpropogation (now general)

• About forks

Autoencoders

Neural networks in practice

On the NLL and cross entropy loss for multiclass classification

NLP example: Named entity recognition

NLP example: Neural language models

1

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

Preliminaries

Vector and matrix derivatives
Resources

• A note on vector and matrix calculus
• A video lecture [slides]

Brief summary of vector and matrix derivatives

We will use the denominator layout, where the shape of ∂f(X)
∂X matches

that of X. (The other option is the Jacobian layout, where the shape
of ∂f(X)

∂X matches X⊤.)

Derivative of a scalar function f : RN → R with respect to vector
x ∈ RN :

∂f(x)
∂x

≜

∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xN

Derivative of a vector function f : RN → RM , where f(x) =[
f1(x) f2(x) · · · fM(x)

]⊤
, with respect to vector x ∈ RN :

∂f(x)
∂x

≜

∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xN

=

∂f1(x)
∂x1

∂f2(x)
∂x1

· · · ∂fM (x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

· · · ∂fM (x)
∂x2

...
∂f1(x)
∂xN

∂f2(x)
∂xN

· · · ∂fM (x)
∂xN

2

https://www.kamperh.com/notes/kamper_matrixcalculus13.pdf
https://youtu.be/FCWrduAxf-Q
https://www.kamperh.com/data414/slides/vector_matrix_derivatives-crop.pdf

Derivative of a scalar function f : RM×N → R with respect to matrix
X ∈ RM×N :

∂f(X)
∂X

≜

∂f(X)
∂X1,1

∂f(X)
∂X1,2

· · · ∂f(X)
∂X1,N

∂f(X)
∂X2,1

∂f(X)
∂X2,2

· · · ∂f(X)
∂X2,N

...
∂f(X)
∂XM,1

∂f(X)
∂XM,2

· · · ∂f(X)
∂XM,N

Using the above definitions, we can generalise the chain rule. Given
u = h(x) (i.e. u is a function of x) and g is a vector function of u,
the vector-by-vector chain rule states:

∂g(u)
∂x

= ∂u
∂x

∂g(u)
∂u

This generalised chain rule comes from the chain rule for multivariate
functions. In the scalar case where g depends on u1 and u2, which in
turn depends on x, we have (Deisenroth et al. 2020, Sec. 5.2.2):

∂g

∂x
= ∂u1

∂x

∂g

∂u1
+ ∂u2

∂x

∂g

∂u2

3

Gradient descent
Resources

• A video lecture [slides]

Brief summary of gradient descent

w

J

4

https://youtu.be/BlnLoqn3ZBo
https://www.kamperh.com/data414/slides/gradient_descent-crop.pdf

Logistic regression, softmax, basis functions
Resources

• A video lecture on basis functions in linear regression [slides]
• A playlist of video lectures on binary and softmax regression

[slides1, slides2]

Brief summary of binary logistic regression

w

Model structure:

Pw(y = 1|x) = fw(x)

= σ(w⊤x) = 1
1 + e−w⊤x

With labels y ∈ {0, 1}, minimise the negative log likelihood (NLL):

J(w) = − log
N∏

n=1
Pw(y(n)|x(n))

= −
N∑

n=1

[
y(n) log fw(x(n)) + (1− y(n)) log

(
1− fw(x(n))

)]

Gradient:
∂J(w)

∂w
= −

N∑
n=1

(
y(n) − fw(x(n))

)
x(n)

How would you modify the above to do binary logistic regression with
basis functions?

5

https://youtu.be/TSFMepJbHa0&list=PLmZlBIcArwhNd_sWiz6f1-NHc3lg3k7PF
https://www.kamperh.com/data414/slides/regression_basis_functions-crop.pdf
https://www.youtube.com/playlist?list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://www.kamperh.com/data414/slides/logistic_regression-crop.pdf
https://www.kamperh.com/data414/slides/multiclass_logistic_regression-crop.pdf

Binary classification of irises
We want to classify irises based on their leaves:1

Binary logistic regression for classifying virginicas:

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Petal length (cm)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Pe
ta

l w
id

th
 (c

m
)

Not Iris virginica

Iris virginica

1Figure from Wikipedia.

6

https://en.wikipedia.org/wiki/Iris_flower_data_set

Binary logistic regression for classifying versicolors is more difficult,
since you can’t separate them linearly:

1 2 3 4 5 6 7
Petal length (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ta

l w
id

th
 (c

m
)

Iris versicolor

How would you address this? Use basis functions:

1 2 3 4 5 6 7
Petal length (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ta

l w
id

th
 (c

m
)

Iris versicolor

7

Binary logistic regression with basis
functions as a neural network

You have already seen a neural network, you just didn’t fit it:

• Linear logistic regression:

fw(x) = σ(w⊤x) = 1
1 + e−w⊤x

• Nonlinear logistic regression:

fw(ϕ(x)) = σ(w⊤ϕ(x)) = 1
1 + e−w⊤ϕ(x)

We can represent binary logistic regression with basis functions as a
neural network:

f

φ1(x) φ2(x)
φK(x)

x1 x2 xD

· · ·

· · ·

+1

+1 w1 w2
wK

b

Instead of designing the basis functions ϕ(x) by hand, can we learn
these features instead?

We can set each basis function value as:

ϕk(x) = σ(w[1]⊤
k x + b

[1]
k)

or more generally as a nonlinear function of the input:

ϕk(x) = g(w[1]⊤
k x + b

[1]
k)

8

where g(·) is some nonlinear function and we learn the parameters
w[1] and b[1] for all features k = 1 to K.

Common options for the nonlinearity include:

• Sigmoid

• tanh

• Rectified linear unit (ReLU)

We could express this neural network more compactly in vector form:

fθ(x) = ŷ = g(w[2]>a[1] + b[2])

φ(x) = a[1] = g(W[1]x+ b[1])

x

This network has a single hidden layer with a binary classification
output layer. It is a special case of a general class of neural networks:
feedforward neural networks, also called multilayer perceptrons.

The crucial difference between logistic regression with basis functions
and what we will do here is that we fit all the parameters from data:

θ =
{
W[1], b[1], w[2], b[2]

}

Our example: We will use the specific binary feedforward network as
our running example in this note, but the principles are general.

9

Why is it called a neural network?
Very very very loosely inspired by structures in the brain:2

Some people hate it when this connection is mentioned, but:

2Figure from Wikipedia.

10

https://en.wikipedia.org/wiki/Neuron#/media/File:Blausen_0657_MultipolarNeuron.png

Backpropagation without forks
How do we fit the parameters in our example?

As usual: Use gradient descent to minimise the NLL.

If we have a single training item (x(n), y(n)):

J(θ) = −
[
y(n) log ŷ(n) + (1− y(n)) log(1− ŷ(n))

]

For gradient descent: Need ∂J
∂u , where u is each of the parameters:

W[1], b[1], w[2], b[2]

You can try and get these in some arbitrary way, but the backpropaga-
tion algorithm gives a principled procedure to obtain these gradients.

It essentially applies the chain rule in an order where previously com-
puted results are reused.

11

The backpropagation algorithm (without forks)
• Represent your neural network as a computational graph. We

use the convention where each node represents an operation
and each edge a variable.

• Forward pass: Start at the inputs and calculate the output of
each operation (node) in the graph. Store these values for use
in the backward pass.

• Backward pass: Start at the output of the graph and move
backwards. For each operation, do the following:

(a) Determine and calculate the derivative of the output vari-
able w.r.t. each of the input variables to the operation.

z

v

u
∂J

∂u
=

∂z

∂u

∂J

∂z

For this operation, we would determine ∂z
∂u

and ∂z
∂v

.

(b) For each input variable u, set3

δu = ∂J

∂u
= ∂z

∂u
∂J

∂z

where z is the output of the operation taking u as input.

• Use the calculated derivatives to do take a gradient step to
update the parameters. Repeat from the forward pass.

3We will see later that, if we have forks, we actually accumulate terms like this
for every operation taking u as input. But in our example we don’t have forks.

12

Backpropagation for our example
Our example:

• Feedforward neural network with one hidden layer and a binary
output layer.

• Single training item: (x(n), y(n))

Computational graph

− [y log ŷ + (1− y) log (1− ŷ)]

J

g(·)

g(·)

W[1]

b[1]

w[2]

b[2]

x

ŷ

z[2] = w[2]>a[1] + b[2]

a[1]

z[1] = W[1]x+ b[1]

(a)

(b)

(c)

(d)

(e)

Forward pass

Easy.

13

Backward pass

(a)
∂J

∂ŷ
= − ∂

∂ŷ
[y log ŷ + (1− y) log (1− ŷ)]

= −y

ŷ
+ 1− y

1− ŷ

δŷ = ∂J

∂ŷ

∣∣∣∣∣x=x(n)

y=y(n)

= −y(n)

ŷ(n) + 1− y(n)

1− ŷ(n)

(b)
∂ŷ

∂z[2] = g′(z[2])

δz[2] = ∂J

∂z[2]

∣∣∣∣∣x=x(n)

y=y(n)

=
[

∂ŷ

∂z[2]
∂J

∂ŷ

]
x=x(n)

y=y(n)

= ∂ŷ

∂z[2]

∣∣∣∣∣x=x(n)

y=y(n)

δŷ

(c) Using vector calculus:4

∂z[2]

∂w[2] = ∂

∂w[2]

(
w[2]⊤a[1] + b[2]

)
= a[1]

δw[2] = ∂J

∂w[2] = ∂z[2]

∂w[2]
∂J

∂z[2]

= ∂z[2]

∂w[2] δz[2]

δb[2] = ∂z[2]

∂b[2] δz[2]

δa[1] = ∂z[2]

∂a[1] δz[2]

4I am dropping the bar now because I am lazy.

14

(d) Similar to (b).

(e) Be careful with this one since it involves a matrix (check the
shapes!):

δW[1] = ∂J

∂W[1]

= δz[1] x⊤

See my YAIT backprop note for details on the derivation for this
last operation.

Numerical values for the gradients at our current estimate

Why did I write the bar in the following?

δŷ = ∂J

∂ŷ

∣∣∣∣∣x=x(n)

y=y(n)

Actually I should have written

δŷ = ∂J

∂ŷ

∣∣∣∣∣θ=θ̂
(m)

x=x(n)

y=y(n)

Why? Because we are calculating the numerical value of the gradients
at our particular current estimate of the parameters θ̂

(m)
in iteration

m. In the forward pass of the next iteration m + 1, the numerical
values for the gradients at this new point will be different. Also, if we
change the data (e.g. for a different mini-batch), then the numerical
values of the gradients will also change. In short: We are at some
specific point of J , and we are taking a optimal gradient step from that
specific point. Relate this to the brief summary of gradient descent
given earlier.

15

http://www.kamperh.com/notes/kamper_backprop22.pdf

Classification of irises using our neural network

1 2 3 4 5 6 7
Petal length (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ta

l w
id

th
 (c

m
)

Iris versicolor

1 2 3 4 5 6 7
Petal length (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ta

l w
id

th
 (c

m
)

Iris versicolor

16

Multilayer feedforward neural network
Above we looked at the specific example of a binary feedforward neural
network with one hidden layer. Let’s go a bit more general.

Vector diagram:

17

A feedforward neural network with L hidden layers using a squared
loss function:

x

W[1] b[1]

z[1] a[1] a[L−1] z[L] a[L]

ŷ
‖ · ‖2 Jg(·) g(·) g(·)

hidden layer 1 layer L− 1 activation

W[2] b[2] W[L] b[L]

For arbitrary layer l:

g(·)

W[l]

b[l]

z[l]

a[l−1]

a[l]

δz[l] = δa[l] ⊙ g′(z[l])
δb[l] = δz[l]

δW[l] = δz[l] a[l−1]⊤

δa[l−1] = W[l]⊤δz[l]

In more traditional explanations, these equations are combined:

δz[l] =
(
W[l+1]⊤δz[l+1]

)
⊙ g′(z[l])

This highlights the recursive nature of backpropagation.

18

Why this (cool) graph formulation?
More traditional explanations of neural networks don’t use this graph
formulation and instead derives things more specifically for particular
architectures. This simplifies things (a bit) and is very concrete. But
this type of conventional explanation is also quite rigid and then hides
the flexibility that comes with the graph formulation.

Adding additional structure is easy:

• As long as we know the derivative of a single operation (node),
the gradient computation is fully specified by the graph.

• Each node just needs to know how to compute its output and
how to compute the gradient w.r.t. its inputs given the gradient
w.r.t. its output.

class MultiplyGate():

def forward(x, y):
z = x*y
self.x = x
self.y = y
return z

def backward(delta_z):
delta_x = self.y * delta_z

dz/dx * dJ/dz
delta_y = self.x * delta_z

dz/dy * dJ/dz
return [delta_x, delta_y]

19

Automatic differentiation
We’ve looked at this specifically for neural networks, but this is ac-
tually an example of the more general methodology of automatic
differentiation.

Modern deep learning frameworks like PyTorch and Tensorflow (or
the older Theano) make use of this graph formulation with automatic
differentiation. And, fortunately, some good programmer has probably
implemented most of the nodes/blocks/operations for you already
(forward and gradient).

Why then study this if the software can do it?
So why did we study how to do this, if software can give us all the
derivatives automatically?

• In some very simple cases, you might not want to have to rely
on (the bulky) PyTorch or Tensorflow. E.g. the gradients for
word2vec is relatively straightforward.

• Sometimes you might want to introduce a new computational
operation and then you might need to implement the gradient
computation.

• More often: You are hacking parts of the gradient computation
for an existing block and need to modify it.

20

https://www.kamperh.com/nlp817/

Backpropogation (now general)

A summary of derivatives for common blocks
Some of these are derived above, others are derived in YAIT backprop:

δb =
∂z

∂b
δz

= I δz = δz

δW = δz x
>

δx =
∂z

∂x
δz

= W> δz

×

B>

A

C = AB>

x z = Wx+ b

W b

δB = δ>CA

δA = δCB

A general notation

In all of the above cases, for arbitrary5 variable U going in to operation
with output Z, the error signal δU is obtained as some kind of product
between ∂Z

∂U and ∂J
∂Z = δZ. For instance:

• With vectors as inputs and outputs:6 δb = ∂z
∂b

δz

• But sometimes the order between ∂Z
∂U and δZ flips: δW = δz x⊤

• Or we have to also take the transpose: δB = δ⊤
CA

5Scalar, vector, matrix or tensor.
6This is just generalised chain rule.

21

http://www.kamperh.com/notes/kamper_backprop22.pdf

Based on this observation, Zhang et al. (2021) gives a very nice way
to capture all of these details with a new operator, prod:

δU = ∂J

∂U = prod
(

∂Z
∂U ,

∂J

∂Z

)

= prod
(

∂Z
∂U , δZ

)

This looks very similar to the the generalised chain rule for vectors, but
can now be applied to scalars, vectors, matrices or tensors without a
bloaty notation. The prod operator captures all the necessary details:
transpositions, swapping input positions and anything else that we
need to deal with.

22

https://d2l.ai/chapter_multilayer-perceptrons/backprop.html

About forks
In the title of the previous backpropagation section I explicitly noted
that we were dealing with networks without forks, i.e. every variable
serves as the input to only a single operation (node in the computational
graph). What happens when we have forks?

From the generalised chain rule: We need to accumulate all the
gradients for a variable.

To be concrete, for the graph fragment:

u z

a

∂z

∂u

∂J

∂z

∂a

∂u

∂J

∂a

we will have the accumulator

δu = ∂z
∂u

∂J

∂z
+ ∂a

∂u
∂J

∂a

= ∂z
∂u

δz + ∂a
∂u

δa

Using the general notation and for the case where this fragment has
variables that might be matrices or tensors, we would have

δU = prod
(

∂Z
∂U , δZ

)
+ prod

(
∂A
∂U , δA

)

23

Example: L2 regularisation

A real example of where this might happen is if we regularise our
model weights. If we modify our binary feedforward neural network to
include L2 regularisation on just the w[2] weight vector:
J(θ) = −

[
y(n) log fθ(x(n)) + (1− y(n)) log

(
1− fθ(x(n))

)]
+ λw[2]⊤w[2]

then our computational graph would look like this:

− [y log ŷ + (1− y) log (1− ŷ)]

J

+

g(·)

g(·)

W[1]

b[1]

w[2]

b[2]

x

ŷ

z[2] = w[2]>a[1] + b[2]

a[1]

z[1] = W[1]x+ b[1]

L2

r = λw[2]>w[2]

Then the accumulator would change to

δw[2] = ∂J

∂w[2] = ∂z[2]

∂w[2]
∂J

∂z[2] + ∂r

∂w[2]
∂J

∂r

= ∂z[2]

∂w[2] δz[2] + ∂r

∂w[2] δr

= a[1]δz[2] + 2λw[2]δr

24

https://d2l.ai/chapter_multilayer-perceptrons/backprop.html
https://youtu.be/Zojp8z8GD8c

The backpropagation algorithm (now with forks)
• Initialisation: Set accumulators to zero for all input variables:

δU ← 0 for every U

• Forward pass: Start at the inputs and calculate the output of
each operation (node) in the graph.

• Backward pass: Start at the output of the graph and move
backwards. For each operation, do the following:

(a) Determine and calculate the derivative of the output vari-
able w.r.t. each of the input variables to the operation.

Z

V

U prod

(
∂Z

∂U
, δZ

)

For this operation, we would determine ∂Z
∂U and ∂Z

∂V .

(b) For each input variable U, add

prod
(

∂Z
∂U ,

∂J

∂Z

)
to its accumulator, i.e.

δU ← δU + prod
(

∂Z
∂U , δZ

)

Note that in the backward pass you can only consider the opera-
tion with output Z once its associated accumulator δZ is finalised,
i.e. all operations taking Z as input has been backpropped. This
might affect the backprop order. Stated differently, when up-
dating δU as above, δZ needs to be final.

25

On the NLL and cross entropy loss for
multiclass classification

Why do we often say we use the cross entropy loss for multiclass
classification in frameworks like PyTorch? Aren’t we using the NLL?
These are actually the same.

Let’s consider a neural network where the final linear output z[L] feeds
into a softmax layer (I’m dropping the layer superscript from here
onwards):

fθ(x) = 1∑K
j=1 exp(zj)

exp(z1)

exp(z2)
...

exp(zK)

= softmax(z)

The values z are sometimes called the logits. They can be seen as
unnormalised log probabilities.

If we write the target output as a one-hot vector:

y(n) =
[
0 0 . . . 0 1 0 . . . 0

]⊤
then we can write the NLL as:

J(θ) = −
N∑

n=1

K∑
k=1

y
(n)
k log exp(zk)∑K

j=1 exp(zj)

= −
N∑

n=1

K∑
k=1

y
(n)
k log fθ,k(x(n))

= −
N∑

n=1

K∑
k=1

y
(n)
k log ŷ

(n)
k

26

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://discuss.pytorch.org/t/logits-vs-log-softmax/95979

Now recall the definition of cross entropy from the earlier note:

H(p, q) ≜ −
K∑

k=1
pk log2 qk

So thinking of y(n) as a discrete probability distribution with all of
its mass on a single outcome k, then the NLL can be seen as the
cross entropy between the true distribution y(n) and the predicted
distribution ŷ(n).

27

http://www.kamperh.com/nlp817/

Unsupervised neural networks:
Autoencoders

Principal components analysis:

Autoencoder:

28

Neural networks in practice
Different names for feedforward neural networks

• Multilayer neural network

• Feedforward neural network (FFNN)

• Multilayer perceptron (MLP)

• Artificial neural network (ANN)

• Deep neural network (DNN)

Developing neural networks is in an art

• Sometimes useful to scale inputs.

• Instead of vanilla gradient descent, we often use advanced forms
of mini-batch gradient descent (Adam is popular at the moment).

• Different initialisation strategies, e.g. https://arxiv.org/abs/
1811.00293.

• Overfitting: Can combat using standard regularisation, but often
rather just use dropout or rely on SGD with early stopping.

• Need to choose number of hidden layers and number of units
per layer, and often many more hyperparameters.

• Often make architecture choices (e.g. skip connections) to
deal with optimisation problems (e.g. exploding or vanishing
gradients—more on this later).

29

https://arxiv.org/abs/1811.00293
https://arxiv.org/abs/1811.00293

NLP example: Named entity recognition
Named entity recognition (NER): Given an input sentence, find and
classify the names according to their named entity types.

Examples:

last night Paris Hilton wowed in a sequin gown
PER PER

Samuel Quinn was arrested in the Hilton Hotel
PER PER LOC LOC

in Paris in April 1989
LOC DATE DATE

Example named entity types:

Tag Description Example
PER People, characters Shannon is a giant of

information theory.
ORG Organisation The ICC is the governing body of

cricket.
LOC Location Mt. Sanitas is in Sunshine

Canyon.
GPE Geo-political (countries,

states)
Petrol prices are going up in
South Africa.

DATE Days, months, years Micah was born in April.

Example applications:

• Tracking mentions of specific entities of interest in documents.

• Question answering: Answers are often named entities.

• Semantic analysis: Sentiment in discussions of some entity.

30

NER with a neural network
Example sentence:

anywhere in Paris museums are great

We want to classify the entity of Paris.

We use a window of words around the centre word that we want to
classify (window length of one here):

xwin =
[
—x⊤

in— —x⊤
Paris— —x⊤

museums—
]⊤

Each element of the window xt could be a word embedding, but let’s
instead have each be a one-hot vector representing the word type
(we’ll see in a bit what we get when we do this).

We can then use the following neural network for NER:

x−1 x0 x+1

W
[1]
−1 W

[1]
0 W

[1]
+1

cat

xwin

z[1]

a[2] = g(W[2]z[1] + b[2])

z[3] = W[3]a[2]

fθ(xwin) = softmax(z[3])

W
[1]
t xt

.

W[3]

W[2]

31

http://www.kamperh.com/nlp817/

Learning word embeddings and a classifier jointly

• When xt is one-hot, what does the operation Wt × xt give us
in terms of Wt? What is Wt representing?

• We are just looking up embeddings!

• The above neural network is jointly learning to classify (W[3],
W[2], b[2]) and also three types of word embeddings (W[1]

−1,
W[1]

0 , W[1]
+1), all at the same time!

32

NLP example: Neural language models
This windowed classification approach, where word embeddings are
learned jointly with a classifier, also formed the basis of early neural
language models (Bengio et al. 2003).

A long long time ago in a ...

x1 x2 x3 x4

time ago in a

E E E E

One-hot word vectors.

g
a
l
a
x
y

a
a
r
d
v
a
r
k

z
o
o

l
a
n
d

W[1]

W[2]

Output distribution

fθ(x1:4) = ŷ

= softmax(W[2]h+ b[2])

∈ [0, 1]|V|

Hidden layer

h = g(W[1]e+ b[1])

Concatenated word
embeddings

e = [e1; e2; e3; e4]

33

https://www.youtube.com/watch?v=FoDz01QNSiY
https://www.youtube.com/watch?v=FoDz01QNSiY

Further reading
I would encourage you to go through the much more detailed YAIT
backprop notes, which includes more exact details of the gradient
calculations given here.

References
Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” JLMR, 2003.

CS231n: Optimization 2, Stanford University, 2023.

M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for
Machine Learning, 2020.

H. Kamper, “Yet another introduction to backpropagation,” Stellen-
bosch University, 2022.

C. Manning, “CS224N: Neural net learning, gradients by hand (ma-
trix calculus) and algorithmically (the backpropagation algorithm),”
Stanford University, 2022.

I. Murray, “MLPR: Backpropagation of derivatives,” University of
Edinburgh, 2018.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep
Learning, 2021.

A. Ng, “Multi-layer neural network,” Stanford University, 2013.

34

http://www.kamperh.com/notes/kamper_backprop22.pdf
http://www.kamperh.com/notes/kamper_backprop22.pdf
https://cs231n.github.io/optimization-2/
https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf
http://www.kamperh.com/notes/kamper_backprop22.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture03-neuralnets.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2022-lecture03-neuralnets.pdf
https://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/notes/w5a_backprop.html
https://d2l.ai/
https://d2l.ai/
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

	Preliminaries
	Vector and matrix derivatives
	Resources
	Brief summary of vector and matrix derivatives

	Gradient descent
	Resources
	Brief summary of gradient descent

	Logistic regression, softmax, basis functions
	Resources
	Brief summary of binary logistic regression

	Binary classification of irises
	Binary logistic regression with basis functions as a neural network
	Why is it called a neural network?
	Backpropagation without forks
	How do we fit the parameters in our example?
	The backpropagation algorithm (without forks)
	Backpropagation for our example
	Computational graph
	Forward pass
	Backward pass
	Numerical values for the gradients at our current estimate

	Classification of irises using our neural network

	Multilayer feedforward neural network
	Why this (cool) graph formulation?
	Automatic differentiation
	Why then study this if the software can do it?

	Backpropogation (now general)
	A summary of derivatives for common blocks
	A general notation

	About forks
	Example: L_2 regularisation

	The backpropagation algorithm (now with forks)

	On the NLL and cross entropy loss for multiclass classification
	Unsupervised neural networks: Autoencoders
	Neural networks in practice
	Different names for feedforward neural networks
	Developing neural networks is in an art

	NLP example: Named entity recognition
	NER with a neural network
	Learning word embeddings and a classifier jointly

	NLP example: Neural language models
	Further reading
	References

